Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 209: 98-106, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379588

RESUMO

Organoids are in vitro models that originated from the three-dimensional culture of stem cells with the ability to reproduce part of the in vivo structural and functional specificities of body organs. Intestinal organoids have great relevance in cell therapy, as they provide more accurate information about tissue composition and architecture in relation to two-dimensional culture, in addition to serving as a study model for host interaction and drug testing. The yolk sac (YS) is a promising source of mesenchymal stem cells (MSCs), which are multipotent stem cells with self-renewal ability and potential to differentiated into mesenchymal lineages. Besides this, the YS is responsible for the formation of intestinal epithelium during embryonic development. Thus, the aim of this study was to verify if the three-dimensional in vitro culture of stem cells derived from the canine YS is capable of developing intestinal organoids. MSCs from the canine YS and gut cells were isolated and characterized, then three-dimensionally cultured in Matrigel. In both cells lineages, spherical organoids were observed and after 10 days the gut cells formed crypt-like buds and villus-like structures. Despite having the same induction of differentiation process and having the expression of intestinal markers, the MSC from the YS morphology was not in the form of crypt budding. The hypothesis is that these cells could generate structures equivalent to the intestinal organoids of the colon that other studies showed formed only spherical structures. The culture of MSC from the YS, as well as the establishment of protocols for 3D cultivation of this tissue, is relevant, as it will serve as a tool in various applications in basic and scientific biology.


Assuntos
Células-Tronco Mesenquimais , Saco Vitelino , Gravidez , Feminino , Animais , Cães , Células-Tronco Mesenquimais/metabolismo , Organoides , Mucosa Intestinal , Células-Tronco/metabolismo , Diferenciação Celular
2.
Animals (Basel) ; 13(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37174472

RESUMO

The role of the yolk sac (YS) in miscarriage is not yet clear, largely due to ethical reasons that make in vivo studies difficult to conduct. However, 3D cultures could provide a solution to this problem by enabling cells to be arranged in a way that more closely mimics the structure of the YS as it exists in vivo. In this study, three domestic species (porcine, canine, and bovine) were chosen as models to standardize 3D culture techniques for the YS. Two techniques of 3D culture were chosen: the Matrigel® and Hanging-Drop techniques, and the 2D culture technique was used as a standardized method. The formed structures were initially characterized using scanning electron microscopy (SEM), immunohistochemistry (IHC), and quantitative real-time PCR (RT-qPCR). In general, the 3D culture samples showed better organization of the YS cells compared to 2D cultures. The formed structures from both 3D methods assemble the mesothelial layer of YS tissue. Regarding the IHC assay, all in vitro models were able to express zinc and cholesterol transport markers, although only 3D culture techniques were able to generate structures with different markers pattern, indicating a cell differentiation process when compared to 2D cultures. Regarding mRNA expression, the 3D models had a greater gene expression pattern on the Hemoglobin subunit zeta-like (HBZ) gene related to the YS tissue, although no significant expression was found in Alpha-fetoprotein (AFP), indicating a lack of endodermal differentiation in our 3D model. With the initial technique and characterization established, the next step is to maintain the cultures and characterize the diversity of cell populations, stemness, functions, and genetic stability of each 3D in vitro model.

3.
Anim Reprod ; 19(4): e20220063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425401

RESUMO

Extracellular vesicles (EVs) derived from stem cells (SCs) have regenerative potential and the possibility of being used in treating chronic diseases. EVs present lower risk of tumorigenicity and easily to isolation and storage. Therefore, this research aims to compare the morphological characteristics of the EVs (up to 150nm) derived from stem cells obtained from canine amniotic membranes in different passages during the in vitro culture. For this, cells from the amniotic membranes were isolated, cultured, and characterized. In order to answer our aim, the number of cells was normalized at each passage to generate conditioned media for EVs separation. The cells were differentiated into adipogenic, chondrogenic, and osteogenic tissue, to characterize these cells as mesenchymal stem cells (MSC). Moreover, flow cytometry analysis was performed and showed that the MSC were positive for CD90, CD105 and negative for CD34, CD45, mesenchymal and hematopoietic markers, respectively. For EVs analysis, MSC in different passages (P0-P2) were culture until 80% of confluence, then the medium was replaced by EVs depleted medium. After 48h, culture medium was collected and centrifuged to separate EVs, followed by nanoparticle tracking analysis. The EVs were also characterized by western blot and transmission electron microscopy (TEM). EVs were positive for Alix and negative for Cytochrome C as well as presented the traditional cup-shape by transmission electronic microscopy. Our results demonstrated that the concentration in the different passages was increased in P0 compared to P1 and P2 (p<0.05). No differences were found in EVs size (P0=132nm, P1=130nm and P2=120nm). Together, these results demonstrate that P0 of MSC is enriched of EVs when compared to later passages, suggesting that this passage would be the best to be applied in pre-clinical tests. Despite that, more studies are necessary to identify the EVs content and how the cells will respond to treatment with them.

4.
Anim Reprod ; 16(1): 24-30, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33299475

RESUMO

In regenerative medicine stem cell biology has become one of the most interesting and more often studied subject. The amniotic membrane is the innermost layer of the fetal membranes and is considered a potential tool to treat many pathologies. It is used because it can be collected from discarded fetal material and is a rich source of stem cells with high proliferation and plasticity ratio capable of proliferating and differentiate in vitro. We propose to elucidate the characteristics and potencial clinical application of cells derived of amniotic membrane in veterinary medicine.

5.
Anim Reprod ; 17(3): e20200044, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33029218

RESUMO

The creation of a genetic resource bank of avian species aims to prevent the decline and fragmentation of wild bird populations, which in turn lead to the loss of genetic diversity and, in more serious cases, the extinction of the most threatened species. In order for the collected genetic material to be stored in a bank and useful when necessary, it is essential to improve the technique ensuring its effectiveness. Thus, our study used feather follicle cells from the domestic gallus species to standardize the technique of cell culture and subsequent cryopreservation. This study aimed to establish a protocol, in vitro, of isolation and primary culture of somatic cells derived from the feather follicle, with the purpose of establishing a cell lineage, and evaluate its viability for the biobank formation. Developing feathers of gallus domesticus were collected at 12, 21 and 34 days of age. The feathers were morphologically analyzed and then we selected the region of the calamus due to the presence of pulp for cell culture and cryopreservation. The results showed that it is possible to find cells with distinct morphology; cells in elliptical shape with central nucleus also in elliptical shape, cells with shape and round nucleus, cells compatible with the fibers of the barbules, cell agglomerates and cells adhered to the bottom of the plate with fibroblastatoid shape. After 24 hours of culture there was the presence of primary culture with 80% of confluence and after cryopreservation the average viability after freezing was 68.8%, with cellular morphologies being maintained. Therefore, we proved the isolation of somatic cells from the follicle of bird's feathers, suggesting that this is a source of great value, viable and effective for obtaining biological material for the elaboration of a biobank.

6.
Anim Reprod ; 15(4): 1246-1252, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34221139

RESUMO

The reason why shearing ewes in mid-pregnancy does increase the lamb birth weight is not completely clears. Therefore, we focused on the analyses of the deposition of glycogen in different fetal tissues to investigate this issue. Thirteen pregnant Australian Merino ewes, raised in native pasture, were separated in two groups. One group (n = 7) was shorn (SE) at 70 days of pregnancy, whereas another group (n = 6) remained unshorn (NSE). Cesarean section was conducted in all the ewes at near parturition, when placenta and fetuses sampling were collected. Placenta, liver and muscle samples were fixed and stained with glycoprotein-reactive acid-Schiff acid for analysis under light microscopy. The quantification of these glycoproteins was performed with the support of a program that analyzes the measurement of the intensity of staining by field. Five random fields from each sample were used, where statistical analyzes was used as normal test T. Among the analyzed regions, the deposition of glycoprotein between SE and NSE groups was statistically different in the hepatic portal vein (54,499.23 µm 2 in SE and 34,830.73 µm2 in NSE) and in the total muscle area of the sample fragment (41,128, 7 µm2 and 31,942.7 µm2 , respectively; P < 0.05). We conclude that shearing ewes at the 70th day of gestation lead to accumulation of glycoproteins in the liver and muscle of fetuses, which may be responsible for the increase in birth weights in that group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...